Lithiierung von 2-Methylbenzoxazol: organometallische Derivate eines neuen dreizähnigen Liganden

Susanna Kerschl und Bernd Wrackmeyer*

Laboratorium für Anorganische Chemie der Universität Bayreuth, Postfach 101251, D-8580 Bayreuth (B.R.D.)

(Eingegangen den 25. Februar 1987)

Abstract

2-Methylbenzoxazole can be lithiated at the methyl group to give a dimer (6) which reacts with various-element halides (PhBCl₂, Ph₂SnCl₂, Me₂SiCl₂) to give the new chelate complexes (7). Reaction of 6 with two equivalents of (*E*)-2-(chloro)dimethylstannyl-3-diethylboryl-2-pentene yields a new polycyclic compound (8) which contains five-coordinate tin (a chiral centre), and four-coordinate boron. No dimer corresponding to 6 was obtained when 2-methylbenzothiazole was lithiated. The new compounds have been characterized by ¹H, ¹¹B, ¹³C, ²⁹Si, ¹¹⁹Sn NMR spectroscopy and by elemental analyses.

Zusammenfassung

2-Methylbenzoxazol lässt sich an der Methylgruppe lithiieren, wobei Dimerisation zu 6 eintritt. Das Dimer reagiert mit verschiedenen Elementhalogeniden (PhBCl₂, Ph₂SnCl₂, Me₂SiCl₂) zu neuen Chelatkomplexen (7). Die Reaktion von 6 mit zwei Äquivalenten (*E*)-2-chlorodimethylstannyl-3-diethylboryl-2-penten führt zu einer neuen polycyclischen Verbindung (8), die fünffach koordiniertes Zinn als chirales Zentrum und vierfach koordiniertes Bor enthält. Die Lithiierung von 2-Methylbenzothiazol ergibt kein Dimeres analog zu 6. Die neuen Verbindungen sind mittels ¹H-, ¹¹B-, ¹³C-, ²⁹Si-, ¹¹⁹Sn NMR und Elementaranalysen charakterisiert.

Die von Heteroatomen unterstützte Lithiierung substituierter Kohlenwasserstoffe hat den Zugang zu zahlreichen nützlichen Vorstufen für die organische und organometallische Synthese ermöglicht [1]. Wir haben kürzlich zeigen können, dass die Umsetzungen von C-lithiierten Azolen mit dem Organozinnchlorid 1 neue heterocyclische Systeme ergeben [2,3]. In Fortsetzung dieser Arbeiten haben wir uns mit der Lithiierung von 2-Methylazolen beschäftigt. Von solchen Methyllithium-Derivaten war berichtet worden, dass bei unterschiedlichen Bedingungen Umlagerungen und/oder Dimerisierung zu 2 erfolgt [4-6], oder, dass bei Erwärmen auf Raumtemperatur Zersetzung eintritt [7]. Eine der möglichen Grenzstrukturen der Dimeren zeigt 2 [4-6,8].

Sieht man von dem indirekten Nachweis für Verbindungen des Typs 2 mittels Hydrolyse ab [4-6,8], wurde das synthetische Potential von 2 kaum untersucht. Wir berichten hier über die Lithiierung von 2-Methylbenzoxazol (3). In der Literatur findet sich nur ein Hinweis, dass nach der Lithiierung von 3 bei -78 bis -10 °C schliesslich die dimere Dilithium-Verbindung analog zum Typ 2 auftritt [8]. Die Verbindungen 2 sind dreizähnige Liganden, die nach Umsetzung mit Metallhalogeniden neuen Komplexe geben können.

Ergebnisse und Diskussion

Reaktionen

Die Reaktion von 2-Methylbenzoxazol (3) mit n-Butyllithium in Hexan/THF oder Hexan/Ether führt bereits bei -78° C überwiegend (>75%) zu der dimeren Dilithium-Verbindung 6 (analog zu 2). Dies folgt aus der Charakterisierung der Produkte 7, wenn 6 mit Phenyldichlorboran, Diphenyldichlorstannan oder Dimethyldichlorsilan reagiert (Schema 1). Die gleichen Produkte 7 erhält man, wenn die Reaktionslösung nach der Lithiierung auf -10° C oder Raumtemperatur erwärmt wird, bevor die Umsetzung mit den Elementhalogeniden erfolgt. Die Reaktion von 6 mit 1 ergibt dagegen zwei Produkte (8, 9) deren Entstehung mit einem Sn-Methylgruppen-Austausch zu erklären ist (Schema 1).

Die Verbindungen 7a, b und 8 sind gelb bis orange gefärbte Feststoffe, die gut löslich sind in Ether, Hexan, Benzol, Toluol, Dichlormethan. Sie kristallisieren langsam aus konzentrierten Lösungen in einem Gemisch Benzol/Pentan (1/1), Verbindung 7c wurde noch nicht rein erhalten.

Die Gegenwart zweier elektrophiler Zentren in *cis*-Stellung an der C=C Doppelbindung in 1 bedingt in 8 eine strukturelle Besonderheit im Vergleich zu 7: In 8 besteht zusätzlich eine koordinative O-B Bindung, die dem System eine relativ hohe konformative Stabilität verleiht (vgl. NMR Diskussion).

Kontrollversuche ergaben in Übereinstimmung mit [7], dass die Lithiierung von 2-Methylbenzothiazol (4) kein Dimeres analog zu 2 liefert. Dies folgt aus der Umsetzung des Lithiierungsproduktes mit Me₃SiCl. Wie beschrieben [5] ergibt die Lithiierung von 2,4-Dimethylthiazol (5) nach Erwärmen auf RT hauptsächlich ein

Schema 1. E = PhB (7a), Ph_2Sn (7b), Me_2Si (7c).

Dimeres analog zu 2, welches mit dem Zinnhalogenid 1 nach Schema 1 reagiert und die Verbindungen 10 und 9 liefert. Die saubere Trennung von 10 und 9 gelang bisher nicht. Jedoch kann 10 aufgrund seiner NMR Daten (¹H, ¹¹B, ¹³C, ¹¹⁹Sn) leicht von 9 [9] unterschieden und identifiziert werden.

NMR Spektroskopie

Charakteristische NMR Daten für 7, 8 sind in Tab. 1 und für 10 in Tab. 2 enthalten. Eine vollständige Zuordnung der ¹H- und ¹³C-Resonanzen war auch bei Einsatz von 2D-NMR Techniken (¹H-¹H COSY und ¹H-¹³C-Shift Korrelation) und ¹H-NOE-Differenzspektren schwierig [10,11]. Lediglich in 8 gelang die Zuordnung aller 26 ¹³C Resonanzen (vgl. Fig. 1). Zusätzlich stützen sich die Strukturvorschläge für 7 und 8, 10 auf die Resonanzen der Heterokerne ¹¹B, ²⁹Si und ¹¹⁹Sn, sowie auf die Kopplungskonstanten ⁿJ(¹¹⁹Sn¹H), ⁿJ(¹¹⁹Sn¹³C). Die chemischen

Tabelle 1

NMR Daten^{a,b} organometallischer Derivate von 6: 7a, b, c, 8

		8(¹³ C)(((H1)))										
		(E	(2)	(3)	(4)	(2)	(9)	(,1)	(,2)	(3')	(4')	())	(,)
	$E = BC_6H_5$	155.4	114.3 (7.65)	124.4 (7.30)	118.9 (6.81)	117.0 (7.08)	135.2	149.0	110.8 (7.43)	125.9 (7.28)	126.0 (7.35)	112.9 (7.06)	134.1
f	$E = Sn(C_6H_5)_2$ °	157.9	115.8 (7.33)	124.0	122.5	118.0	139.6	147.0	110.2	124.9	126.0	115.4	138.7
7 c	$E = Si(CH_3)_2^{d}$	155.3	116.0	124.2	120.7	117.4	136.3	148.2	110.5	125.1	125.5	114.5	133.2
20		149.9	120.4 (7.42)	125.6 (6.93)	120.7 (6.74)	123.8 (6.72)	136.0	147.1	110.4 (6.97)	124.1 (6.80)	125.1 (6.87)	113.5 (6.76)	137.6

	70	8(¹³ C)((8(¹ H))			Sonstige in E				δ(X) in E
E L	je u je u O z v z o u z u z o u z u z o u z u z u z o u z u z u z u z u z u z u z u z u z u z	(a)	(4)	3	(þ)					
a L	E = BC ₆ H ₅	161.4	80.9 (5.49)	162.4	23.3 (2.54)	131.2 (<i>o</i>) (7.33)	127.8 (m) (7.15)	127.7 (<i>p</i>) (7.15)		7.3 (¹¹ B)
f	$\mathbf{E} = \mathrm{Sn}(\mathrm{C_6H_5})_2^{\circ}$	166.8 [8.3]	81.9 [13.1] (5.23)	167.6	23.9 [18.6] (1.83)	139.6 (i) [951.5]	136.5 (o) [54.0]	129.1 (<i>m</i>) [84.0]	130.4 (<i>p</i>) [16.4]	– 273.0 (¹¹⁹ Sn)
7c	$E = Si(CH_3)_2^{-d}$	162.3	84.4 (5.16)	163.8	22.9 (1.89)	4.0 [88.7] (0.66)				– 59.8 (²⁹ Si)
œ		167.2	81.8 [12.0] (5.00)	165.6 [8.8]	23.5 [13.6] (1.88)	- 1.2 (SnMe) [523.2] (0.53) [73.2]	125.5 (SnC=) [958.0]	180.4 (BC=) [152.4]		– 150.4 (¹¹⁹ Sn) 11.7 (¹¹ B)
^a 7a i (CD ₂) sind ' nanze nicht Paran	in CD_2Cl_2 , Tb_4 , c, 8 in C_6D_6 , Cl_2) 53.8, $\delta(^{13}C)$ (C_6D_6) 12 $\eta(^{119}Sn^{13}C)$, $^1J(^{29}Si^{13}C)$ un an nicht vollständig gesichert; im ¹ H neter in E; 13.6 [br], 17.1 [br]	alle Proben 8.0), externu d "J(¹¹⁹ Sn ¹ 1 ¹⁹ Sn ¹ :: andere ¹ NMR Spek	t ca. 5–109 es TMS (² : H) (Hz); H Resonan :trum wird).88) (0.62)	6, bei 27–2 ⁹ Si), extern [br] kennz [br] kennz izen wurde ein kompl (1.17) BE	8°C; 8-W les Me ₄ Sn eichnet dic in nicht zu exes Multi t ₂ ; 18.3 [15	(1195a). ^b In () sii (1195a). ^b In () sii (verbreiterten ¹³ C geordnet: Multiple plett bei $\delta(^{1}H)$ voi 59.2] (1.6) [108.8] =	atternes TMS (¹ H), ad die $\delta(^{1}H)$ -Wert Resonanzen borg etts bei $\delta(^{1}H)$ 6.5. a 6.7–7.3 beobacht C-CH ₃ ; 25.2 [169.	, externes BF ₃ . Et te, soweit sie zugi gebundener Kohl –6.9, 7.0 und 7.8 tet (alle aromatis .0], 13.6 [19.6] (2.	20 (¹¹ B), exter bordnet werden enstoffe. ^c Zuo 13. ^d Zuordnun chen ¹ H). ^e Übi 41) (1.17) =CC	nes TMS (¹³ C, δ (¹³ C) konnten (ppm); in [] rdnung det ¹³ C-Reso- g det ¹³ C Resonanzen rige ¹³ C und ¹ H NMR H_2CH_3 .

\$(13C) (1	\$(1H)													δ(¹¹ B)	δ(¹¹⁹ Sn)
E	6	(,1)	(2')	(a)	(q	(0)	(p)	=CMe	=CEt	SnMe	BEt ₂	SnC=	₿Ċ		
108.2	144.1	107.0	147.6	157.3	92.2	169.7	23.7	16.8	25.4	8.0	16.3 b	130.4	179.3	10.8	- 106.0
					[12.0]			18.9	[165.0]	[553.6]	[br]	[876.3]	[br]		
								27.0	14.2		11.8	1	[162.0]		
									[17.0]				•		
(6.37)		(5.39)			(12.31)		(2.36)	(1.65)	(2.30)	(0.72)					
								(1.86)	(0.95)	[74.0]					
								(1.96)							
Vol F	issnoten v	1. h Tah	1: in CD	CD ₂ and	Reaktion	slösune i	m Gemis	h mit e	Zuordnine	13 C- 11	H_Pee	000007e0	icht asicl	ier b Bei	

Aufspaltung der B¹³CH₂-Resonanzen beobachtet: 8⁽¹³C) 17.6 [br] und 14.6 [br].

Tabelle 2

NMR Daten a des Tetracyclus 10

Щ

4 4 2

Å, N Me

1¹ 2¹Me

Fig. 1. 75.5 MHz ¹³C¹H NMR Spektrum von 8 mit Zuordnung aller 26 ¹³C Resonanzen. Für die Zuordnung wurden 2D-NMR Messungen (¹H-¹H COSY, ¹H-¹³C Shift Korrelationen basierend sowohl auf ¹J(¹³C¹H) and ²J(¹³C¹H) und ¹H NOE-Differenzexperimente (¹H(5){¹H(d)}; ¹H(5'){¹H(e)}) durchgeführt. Die borgebundenen Kohlenstoffe (g, 1) sind an den breiten weniger intensiven ¹³C Resonanzsignalen gut zu erkennen.

Verschiebungen $\delta(^{11}B)$ [12], $\delta(^{29}Si)$ [13] und $\delta(^{119}Sn)$ [14] belegen die Erhöhung der Koordinationszahl auf vier (Boratom in 7a, 8, 10), bzw. fünf (Silicium- und Zinnatome in 7c, 7b, 8, 10). Auch die vergleichsweise grossen Werte der Kopplungskonstanten ${}^{1}J({}^{29}Si{}^{13}C)$ (7c) und ${}^{1}J({}^{119}Sn{}^{13}C)$ (7b, 8, 10) stehen im Einklang mit der Koordinationszahl fünf am Silicium [12], bzw. am Zinnatom [13].

Die Asymmetrie des dreizähnigen Liganden bedingt, dass das Zinnatom in 8 und 10 ein chirales Zentrum ist. Erfolgt die Öffnung und Schliessung der koordinativen O-B Bindung in 8 bzw. S-B Bindung in 10 langsam bezüglich der NMR-Zeitskala, werden für die ¹³C Kerne der *B*-Ethylgruppen je zwei ¹³C Resonanzsignale erwartet. Dies wird in 8 beobachtet, ebenso wie die Aufspaltung der ¹H Resonanzen der =C-Ethylgruppe in den AB-Teil eines ABM₃ Spinsystems. Für 10 findet man bei RT nur zwei ¹³C Resonanzen für die BEt₂ Gruppe. Bei -60° C beobachtet man zwei ¹³C Resonanzen für die BCH₂-Kohlenstoffe und Koaleszens der zugehörigen ¹³CH₃ Resonanzen. Erwartungsgemäss ist die koordinative S-B Bindung schwächer als die O-B Bindung. Bei 7b, c werden keine unterschiedlichen Resonanzen für die Sn-Phenyl, bzw. Si-Methylgruppen (bis -80° C) gefunden. Bei Annahme einer trigonal bipyramidalen Struktur deutet dies auf die äquatoriale Position der Organylreste hin. Ein Schneller dynamischer Prozess kann dennoch nicht ausgeschlossen werden.

Experimentelles

Alle Arbeiten wurden unter N₂-Schutzgas in getrockneten Lösungsmitteln und ausgeheizten Glasgefässen durchgeführt. NMR Spektren wurden an Bruker AC 300, JEOL FX 90Q, sowie JEOL GX 400 Spektrometern aufgenommen. Das Massenspektrum von 8 wurde mit einem Finnigan MAT CH 5 Gerät registriert. Elementaranalysen sind in der Analytischen Abteilung des Max-Planck-Instituts für Kohlenforschung, Mülheim, sowie im Mikroanalytischen Labor Pascher, Remagen, durchgeführt worden. 2-Methylbenzoxazol (3), 2-Methylbenzothiazol (4) 2,4-Dimethylthiazol (5), n-Butyllithium/Hexan und Me₂SiCl₂ wurden als Handelsprodukte eingesetzt. Die Halogenide PhBCl₂ [15], Ph₂SnCl₂ [16] und 1 [2] gewannen wir nach Literaturvorschriften.

Dimerisierung von (Benzoxazol-2-yl)methyllithium zu 6

Eine Lösung von 1.32 g 2-Methylbenzoxazol (10 mmol) in 20 ml Ether wird auf -78° C gekühlt und innerhalb von 20 min mit 6.4 ml einer 1.56 *M* Lösung von n-BuLi in Hexan (10 mmol) versetzt. Die so entstandene hellgelbe Lösung wird 30 min bei -78° C gerührt und ist dann für weitere Umsetzungen bereit.

Derivate von 6

Lösungen von 0.8 g PhBCl₂, 1.72 g Ph₂SnCl₂, 0.65 g Me₂SiCl₂ (je 5 mmol), bzw. 3.22 g 1 (10 mmol) in je 10 ml Hexan werden bei -78° C innerhalb von 5 min zu der Lösung des dimeren 6 getropft. Die Reaktionslösungen verfärben sich tiefgelb (PhBCl₂, Me₂SiCl₂), bzw. orange (Ph₂SnCl₂, 1). Nach 4 h Rühren bei RT wird vom Unlöslichen abfiltriert. Das Filtrat wird vom Lösungsmittel befreit, wobei die Verbindungen 7 in ca. 80% Ausbeute als festes Rohprodukt erhalten werden, welches laut ¹H-, ¹³C NMR zu weniger als 15% verunreinigt ist. Die Verbindungen 8, 9 fallen gemeinsam (1/1) als Öl an. 7a, b werden durch wiederholtes Umkristallisieren aus Benzol/Pentan (1/1) gereinigt: 0.7 g (40%) 7a, 0.94 g (35%) 7b. Von 7c konnte auf diesem Weg noch keine reine Substanz gewonnen werden. Reines 8 kristallisiert aus einer konzentrierten Benzol-Lösung der Mischung aus 8 und 9 und kann durch Waschen mit kaltem (-78° C) Pentan von 9 vollständig befreit werden. 7a, gelbe, an der Luft stabile Kristalle, Fp. 177–178°C. Gef.: C, 74.2; H, 5.0; C₂₂H₁₇BN₂O₂ (352.2) ber.: C, 75.0; H, 4.9%.

7b, gelbe luftempfindliche Kristalle, Fp. 152–154°C. Gef.: C, 62.2; H, 4.1; $C_{28}H_{22}N_2O_2Sn$ (537.2) ber.: C, 62.6; H, 4.1%.

8, orange, luftempfindliche Kristalle, Fp, 155–159°C. MS m/z (70 eV, Verdampfungstemperatur 120°C): 536 (0% M^+), 507 (36, $M^+ - C_2H_5$), 275 (100, $M^+ - C_{10}H_{21}$ Sn). Gef.: C, 57.4; H, 6.2; N, 5.3; Sn, 22.7; $C_{26}H_{33}BN_2O_2$ Sn (535.1) ber.: C, 58.4; H, 6.2; N, 5.2; Sn, 22.2%.

Dank

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für die Unterstützung dieser Arbeit. Herrn Prof. Dr. R. Köster danken wir für die Durchführung der Elementaranalysen und der Massenspektren.

Literatur

- 1 H.W. Gschwend und H.R. Rodriguez, Org. React., 26 (1979) 1.
- 2 S. Kerschl und B. Wrackmeyer, Z. Naturforsch. B, 41 (1986) 890.
- 3 S. Kerschl, B. Wrackmeyer, A. Willhalm und A. Schmidpeter, J. Organomet. Chem., 319 (1987) 49.
- 4 A.I. Meyers und G. Knaus, J. Am. Chem. Soc., 95 (1973) 3408.
- 5 G. Knaus und A.I. Meyers, J. Org. Chem., 39 (1974) 1189.
- 6 A.I. Meyers, D.L. Temple, N.L. Nolen und E.D. Mikelich, J. Org. Chem., 39 (1974) 2778.
- 7 M.V. Costa und P. Lochon, J. Organomet. Chem., 293 (1985) 265.
- 8 B. Roussel, M. de Guerrero und J.C. Galin, Macromolecules, 19 (1986) 291.
- 9 G. Menz und B. Wrackmeyer, Z. Naturforsch. B, 32 (1977) 1400.
- 10 R. Benn und H. Günther, Angew. Chem., 95 (1983) 381; Angew. Chem. Int. Ed. Engl., 22 (1983) 390.
- 11 J.K.M. Sanders und J.D. Mersh, Progr. NMR Spektrosc., 15 (1982) 353.
- 12 B. Wrackmeyer und R. Köster in R. Köster (Hrsg.), Houben-Weyl, Methoden der Organischen Chemie, Vol. XIII/3c, G. Thieme Verlag, Stuttgart, 1984, S. 377-611.
- 13 H. Marsmann in E. Fluck, P. Diehl und R. Kosfeld (Hrsg.), NMR Basic Principles and Progress, Vol. 17, Springer Verlag, Berlin, 1981, S. 65-235.
- 14 B. Wrackmeyer, Ann Rep. NMR Spectrosc., 16 (1985) 73-186.
- 15 K. Niedenzu, Organomet. Chem. Rev., 1 (1966) 305.
- 16 H. Zimmer und H.-W. Sparmann, Chem. Ber., 87 (1954) 645.